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The influence of thermal expansion on the dynamics of thick to moderately thick
premixed flames (flame thickness less than or comparable to the channel height) for
a variable-density flow in a narrow, rectangular channel is explored. The study is
conducted within the framework of the zero-Mach-number, variable-density Navier–
Stokes equations. Both adiabatic and non-adiabatic channel walls are considered.
A small Péclet number asymptotic solution is developed for steady, variable-density
flame propagation in the narrow channel. The dynamics of channel flames are also
examined numerically for O(1) Péclet numbers in configurations which include flame
propagation in a semi-closed channel from the closed to the open end of the channel,
flame propagation in a semi-closed channel towards the closed end of the channel
and flame propagation in an open channel in which a Poiseuille flow (flame assisting
or flame opposing) is imposed at the channel inlet. Comparisons of the finite-Péclet-
number dynamics are made with the behaviour of the small-Péclet-number solutions.
We also compare how thermal expansion modifies the flow dynamics from those
determined by a constant-density model. The small-Péclet-number variable-density
solution for a flame propagating in a circular pipe is given in the Appendix.

1. Introduction
The propagation of premixed flames in narrow channels or tubes is an important

topic in several areas of combustion research. Emerging technologies such as the
development of microscale combustors as a power source for portable devices (e.g.
laptops or cell phones) depend on this type of configuration (Jones, Lloyd & Weinberg
1978; Fernandez-Pello 2002). Likewise, flame propagation in confined narrow channels
is relevant to the issue of control of flashback in burners with an injectable mass flux.
For micro-combustion technologies, the extension of flammability limits for flames
in narrow channels by minimizing heat losses is essential. For channels of decreasing
height, quenching arises due to the increase in surface area to volume ratio (Lewis
& von Elbe 1961; Jones, Lloyd & Weinberg 1978; Williams 1985). For channel
flame propagation parallel to the wall, two modes of flame extinction are known to
exist. In sufficiently wide channels, partial extinction of the flame in the near-wall
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region occurs, typically over a region around six times the laminar flame thickness
(Clendening, Shackleford & Hilyard 1981; Daou & Matalon 2002). In narrower
channels total flame quenching can occur (Lewis & von Elbe 1961). With relevance
to micro-burner applications, the purpose of the present paper is to examine how the
flow field induced by thermal expansion affects the flame shape, burning rate and
quenching limits in either a semi-closed channel or open channel with a Poiseuille
flow imposed at the inlet, in the limit in which the flame thickness is smaller than, or
of the same order, as the channel height.

Of most relevance to the current study are the studies of Daou & Matalon (2001,
2002). They studied the mass burning-rate variation of symmetric flames in narrow
rectangular channels in a thermo-diffusive model subject to an imposed flow field of
Poiseuille form. Adiabatic channel walls were considered in Daou & Matalon (2001)
and non-adiabatic walls in Daou & Matalon (2002). Asymptotic representations of
the burning rate were obtained in the limit of weak flows and where the laminar
flame thickness was either much longer (thick flames) or shorter (thin flames) than
the height of the channel. For adiabatic walls, a flame either assisted or opposed by a
Poiseuille flow resulted in an increase in the flame curvature due to stretch and hence
an increase in the burning rate. The burning rate increased with the magnitude of the
Poiseuille flow. Thin flames were found to develop more surface area when opposed
by the flow, and consequently a higher burning rate, than a flow-assisted flame with
the same flow intensity. In the limit of very thick flames, the axial flame speed was
found to be smaller (for flow-opposed flames) or larger (for flow-assisted flames)
than the laminar flame speed by the average cross-sectional speed of the Poiseuille
flow. Also, in the thick-flame limit, the leading-order magnitude of the spatial flame
deformation induced by the flow was found to be identical for a flame-opposed or
flame-assisted flow of the same magnitude.

For non-adiabatic walls, Daou & Matalon (2002) conducted an asymptotic analysis
of the structure of thick flames subject to a fixed Poiseuille flow. Provided the
convective heat transfer (loss) parameter was of the order of the square of the ratio
of the channel height to the laminar flame thickness, the flame structure was found to
be one-dimensional with a mass burning rate associated with a one-dimensional flame
having a volumetric heat loss equivalent to that at the channel walls. Consequently,
a critical value of the scaled heat transfer parameter could be identified that resulted
in quenching. For moderate Péclet numbers, flow-opposed non-adiabatic flames were
found to be more sensitive to heat loss than flow-assisted flames. Flames in sufficiently
wide channels were not globally quenched, but undergo local quenching in the wall
vicinity for sufficiently large heat losses. Later work examined the effect of non-unity
Lewis numbers (Kurdyumov & Fernandez-Tarrazo 2002; Cui, Matalon & Jackson
2005) for thin and thick flames. In particular, for thick flames, non-unity Lewis
numbers were found to play a minor role.

Using a large activation energy, near equi-diffusional formulation, Cui et al. (2004)
were able to extend the analysis of the non-adiabatic thick-flame structure (Daou
& Matalon 2002) to an additional order in the ratio of the channel height to flame
thickness. At this order, for adiabatic walls, it was found that the burning rate is
enhanced uniformly regardless of the direction of the imposed flow. However, in the
presence of heat losses, the thick-flame burning rate depended on the direction of
the flow, with generally a higher burning rate identified for flow-assisted flames than
flow-opposed flames. The effects of heat loss on the spatial deformation of the thick
flame are also quantified at this additional order. With no imposed flow, the flame is
found to be convex towards the unburned gases.
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The constant density model (CDM) used in Daou & Matalon (2001) and Daou
& Matalon (2002) does not provide for flow field modifications induced by thermal
expansion due to combustion. In practice, thermal expansion of the hot combustion
gases in narrow channels will induce a flow, which could have significant implications
for channel flame propagation. For example, accelerating flames that propagate
from the closed to the open end of a narrow tube have been been identified and
characterized by Ott, Oran & Anderson (2003) and Gamezo & Oran (2006) via
numerical solution of the compressible Navier–Stokes equations. The acceleration was
attributed to interaction, and resulting stretching, of the flame with a velocity gradient
in a thin boundary layer along the channel wall. The formation of the boundary layer
was a direct result of an upstream flow generated by thermal-expansion-induced flow.
Dobrego, Kozlov & Vasiliev (2006) have also examined the dependence of flame
acceleration on the width of a semi-closed tube after ignition at the closed end of
the tube. There have also been several numerical studies conducted on the nature of
flame propagation in channels or pipes in the context of either the variable density
or compressible reactive Navier–Stokes equations. Hackert, Ellzey & Ezekoye (1998)
have examined the dependence of flame shape and quenching in ducts with either
isothermal, adiabatic or convectively and radiatively cooled walls. In addition to the
role of thermal boundary conditions in determining the shape and speed of flames
propagating in narrow channels, Kim & Maruta (2006) also numerically examined
the role of the shape and magnitude of the channel inlet flow. Tsai (2008) has also
examined the preference for a duct confined flame to propagate as an asymmetric or
symmetric structure.

For narrow channels, the role of axial heat conduction along the heated confining
walls of the channel can also have a significant influence on the combustion stability
limits, particularly so when the flame is stationary or slowly propagating relative to
the channel walls. The wall heating can be due to an external source, or from internal
heating due to combustion in the channel. The effects of axial wall heat conduction
on the propagation and stability limits of combustion in narrow channels have been
examined in a number of recent papers (e.g. Zamashchikov 2001; Zamashchikov &
Minaev 2001; Norton & Vlachos 2003; Ronney 2003; Miesse et al. 2004; Ju & Xu
2005; Leach & Cadou 2005; Maruta et al. 2005; Chao et al. 2007; Jackson et al. 2007;
Mineav, Maruta & Fursenko 2007; Kessler & Short 2008). The influence of axial wall
heat conduction on the configuration studied in the present paper is considered in a
separate paper (Short & Kessler submitted).

The present paper extends the work on the dynamics of thick and moderately
thick flames (flame thickness less than or comparable to the channel height) of
Daou & Matalon (2001, 2002) to variable-density flows. Thus, amongst other issues,
we describe how the flow induced by thermal expansion affects the shape and
propagation of thick and moderately thick flames in both a semi-closed channel and
an open channel with an imposed inlet Poiseuille flow and how total flame extinction
by excessive heat losses in a narrow channel is affected by the flow modification. A
small Péclet number variable-density asymptotic solution is also developed, which
provides valuable insights into how thermal expansion affects the shape, propagation
and quenching of thick and moderately thick flames. In § 2, the model framework
is established. The small-Péclet-number asymptotic solution is developed in § 3. In
§ 4, the dynamics of narrow-channel flames are examined for O(1) Péclet numbers
for both adiabatic and non-adiabatic configurations, and comparisons made with the
small-Péclet-number flame dynamics. A study on how thermal expansion modifies
the flow dynamics from those of a CDM (Daou & Matalon 2001, 2002) is also
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conducted. In Appendix A, the small-Péclet-number variable-density solution for a
flame propagating in a circular pipe is given.

2. Model
Premixed flame propagation in a two-dimensional channel bounded by inert walls

is considered (figure 1). The effects of thermal expansion are considered through
the variable-density Navier–Stokes equations in the zero-Mach-number limit. In non-
dimensional form, and for a one-step reaction mechanism, these are

Dρ

Dt
= −ρ(∇ · u), ρ

Dui

Dt
= −∇p +

1

Re
∇ · τ, ρT = 1, (2.1a–c)

ρ
DT

Dt
=

1

Pe
∇2T + QPeR, ρ

DY

Dt
=

1

LePe
∇2Y − PeR, (2.1d,e)

where

τij =
∂uj

∂xi

+
∂ui

∂xj

− 2

3
δij

(
∂uk

∂xk

)
, (2.2)

for temperature T (= T̃ /T̃ r ), fluid velocity ui = (u, v) (= ũi/s̃F ), density ρ (= ρ̃/ρ̃r ),
pressure p =([p̃ − p̃r ]/ρ̃r s̃

2
F ) and fuel mass fraction Y (= Ỹ /Ỹ r ). The temperature

scale T̃ r (= 300K) is set so that T = 1 in the fresh mixture (where Y =1), while s̃F

is the laminar flame speed and ρ̃r = p̃r/(R̃T̃ r/W̃ ), where p̃r is the pressure at the
channel outlet. The length scale is the half-channel height ã, and the time scale is
ã/s̃F . The non-dimensional groups are the Péclet number Pe (= PrRe, where the
Reynolds number Re = ρ̃r s̃F ã/μ̃ and the Prandtl number Pr = μ̃c̃p/λ̃), the Lewis

number Le = λ̃/c̃pρ̃D̃ and the heat release Q = Q̃Ỹ r/c̃pT̃ r . Here μ̃, c̃p , Q̃, R̃ and λ̃ are
the dimensional dynamic viscosity, specific heat, heat of formation, the gas constant
and the thermal conductivity. In the present study, they are taken to be constant. The
reaction rate is

R = DρY exp(−θ/T ), (2.3)

where the Damköhler number D = D̃D̃T H/s̃2
F and the activation energy θ = Ẽ/R̃T̃ r .

The thermal diffusivity D̃T H = λ̃/ρ̃r c̃p, while D̃ and Ẽ are the dimensional pre-
exponential factor and activation energy.

Symmetry conditions

∂T

∂y
= 0,

∂Y

∂y
= 0,

∂u

∂y
= 0, v = 0,

∂p

∂y
= 0, (2.4a–e)

are applied along the centreline (y = 1), thus restricting our solutions to symmetric
ones. Cases in which the channel wall (y = 0) is either adiabatic or non-adiabatic are
examined. In general, along y = 0,

∂T

∂y
= k(T − 1),

∂Y

∂y
= 0, u = 0, v = 0, (2.5a–d )

where k is a heat loss coefficient. Two different channel inlet/exit configurations are
considered. In one case (figure 1), a fully developed Poiseuille inflow at the inlet x = 0
is imposed, where

T = 1, Y = 1, u = uc(2y − y2), v = 0, (2.6a–d )

with dp/dx = −2uc/Re. Here uc is the axial velocity amplitude on the centreline
(y =1) at x = 0. The channel exit (at x = L) is open to the atmosphere, with a channel
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Unburnt fuel
mixture

Burnt gases

x = L

y = 1

x = 0
y = 0

Figure 1. Schematic of the channel configuration for the variable-density Navier–Stokes
simulations. The line y = 0 is the channel wall, while y = 1 is a flow symmetry boundary.

length that is sufficiently long for the flow to relax to a unidirectional one at x =L.

Then

∂T

∂x
= 0,

∂Y

∂x
= 0,

∂u

∂x
= 0,

∂v

∂x
= 0, p = 0, (2.7a–d )

at x = L. In the other case, either flame propagation away from a closed channel wall
(at x = L) towards an open channel (at x =0) or flame propagation towards a closed
channel wall (at x = 0) is considered. In each case, a flow is not imposed at the open
boundary. The conditions

∂T

∂x
= ±k(T − 1),

∂Y

∂x
= 0, u = 0, v = 0 (2.8a–d )

are imposed at the closed end of the channel, with the plus or minus sign in (2.8a)
respectively assigned according to whether the closed wall is at x = 0 or x =L.

Conditions (2.7) are applied at the open boundary.
One of the main diagnostics used in this paper is the burning rate Ω in the channel

(across y = 0 to y = 1), defined as

Ω = Pe

∫ L

x=0

∫ 1

y=0

R dx dy. (2.9)

This quantity is equivalent to the dimensional average mass consumed in the
channel per unit time and unit breadth and height relative to that consumed
by a one-dimensional flame moving at the laminar speed. Finally, the constant-
density flame channel propagation model (Daou & Matalon 2002) used below for
comparison with the variable-density behaviour is obtained from (2.1d,e) by setting
ρ = 1, u = uc(2y − y2) and v =0.

3. Pe → 0 analysis for rectangular channel flow
The solution for a variable-density flame propagating steadily in a rectangular

channel is now derived in the limit in which the channel height is smaller than the
flame thickness, i.e. in which Pe → 0. The corresponding Pe → 0 solution for flame
propagation in a circular pipe is given in Appendix A. We assume that the flame
propagates to the left (x decreasing) with constant axial velocity U. In a frame of
reference travelling with the axial flame velocity, the axial coordinate is stretched
according to

ξ = Pe(x + Ut), (3.1)

while the pressure is rescaled such that

p̄ = Pe2p, (3.2)
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where ξ and p̄ are O(1). The upstream state is given at ξ → −∞, while the far
downstream state occurs at ξ = +∞. With scales (3.1) and (3.2), (2.1) becomes,

Pe
∂

∂ξ
(ρ(u + U )) + ρ

∂v

∂y
+ v

∂ρ

∂y
= 0, (3.3a)

Peρ(u + U )
∂u

∂ξ
+ ρv

∂u

∂y
= − 1

Pe

∂p̄

∂ξ
+

Pr

Pe

[
4Pe2

3

(
∂2u

∂ξ 2

)
+

(
∂2u

∂y2

)
+

Pe

3

(
∂2v

∂ξ∂y

)]
,

(3.3b)

Peρ(u + U )
∂v

∂ξ
+ ρv

∂v

∂y
= − 1

Pe2

∂p̄

∂y
+

Pr

Pe

[
4

3

(
∂2v

∂y2

)
+ Pe2

(
∂2v

∂ξ 2

)
+

Pe

3

(
∂2u

∂ξ∂y

)]
,

(3.3c)

Pe2ρ(u + U )
∂T

∂ξ
+ Peρv

∂T

∂y
= Pe2 ∂2T

∂ξ 2
+

∂2T

∂y2
+ Pe2QR, (3.3d)

Pe2ρ(u + U )
∂Y

∂ξ
+ Peρv

∂Y

∂y
=

1

Le

(
Pe2 ∂2Y

∂ξ 2
+

∂2T

∂y2

)
− Pe2R. (3.3e)

The Pe → 0 leading-order behaviour can be obtained by setting

T ∼ T0, Y ∼ Y0, u ∼ u0, p̄ ∼ p̄0, ρ ∼ ρ0, v ∼ Pe v0, (3.4)

so that the transverse velocity has an amplitude O(Pe). Consequently,

∂2T0

∂y2
= 0,

∂2Y0

∂y2
= 0,

∂p̄0

∂y
= 0,

∂p̄0

∂ξ
= Pr

∂2u0

∂y2
, ρ0 =

1

T0

, (3.5a–e)

where, from (3.5c), p̄0 = p̄0(ξ ). Integrating the temperature equation (3.5a), and
applying the symmetry condition (2.4a), gives ∂T0/∂y =0. For compatibility, the heat
loss coefficient k in the thermal wall condition (2.5a) must have therefore an amplitude
k = o(1). The specific order of k can be calculated as in Daou & Matalon (2002).
Recognizing that ∂T /∂y � 1, (3.3e) can be integrated across the channel using the
mass conservation relation (3.3a) to show that

Ω =

∫ ∞

−∞

∫ 1

0

R dy dξ ∼ k

QPe2

∫ ∞

−∞
(T (ξ, 0) − 1) dξ, (3.6)

assuming T → 1 and ∂T /∂ξ → 0 as ξ → ±∞ for k �= 0. Thus for Ω = O(1), k = O(Pe2).
Consequently (2.5a) will be rewritten as

∂T

∂y
= Pe2κ(T − 1) (3.7)

with κ =O(1). Similarly, integrating (3.5b) with inert-wall conditions (2.4b) and (2.5b)
gives ∂Y0/∂y = 0, and thus

T ∼ T0(ξ ), Y ∼ Y0(ξ ); (3.8)

i.e. the leading-order temperature and reactant mass fractions have no transverse
spatial variation. Additionally, ρ0 = ρ0(ξ ) as a result of (3.5e). A separable solution
for the leading-order axial velocity variation u0 = u0(ξ, y) can be constructed in the
form

u0 = û0(y)ũ0(ξ ), (3.9)
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where, from (2.4c) and (2.5c), the boundary conditions on û0(y) are

∂û0

∂y
(1) = 0, û0(0) = 0. (3.10)

The form of û0 is determined from the momentum equation (3.5d ), where

∂2û0

∂y2
=

1

Pr ũ0

∂p̄0

∂ξ
= −2C. (3.11)

Thus the axial pressure gradient dp̄0/dξ can be determined once ũ0(ξ ) is known. The
solution for û0 is

û0(y) = C(2y − y2) (3.12)

so that

u0(ξ, y) = ũ0(ξ )(2y − y2), (3.13)

where the constant C has been absorbed into ũ0. Consequently, the axial velocity
variation in the transverse direction corresponds to channel Poiseuille flow but with
a magnitude for each y (0 <y � 1) that varies as a function of the axial coordinate ξ .
The mass conservation equation for the leading-order solution can be obtained from
(3.3a) as

∂

∂ξ
(ρ0(u0 + U0)) + ρ0

∂v0

∂y
= 0, (3.14)

where v0 = v0(ξ, y) and U ∼ U0. An integration between y = 0 and y = 1, in
combination with the boundary conditions v0(ξ, 0) = v0(ξ, 1) = 0 obtained from (2.4d )
and (2.5d ), gives

∂

∂ξ

(
ρ0

(
2

3
ũ0 + U0

))
= 0 (3.15)

or

ρ0(ξ )

(
2

3
ũ0(ξ ) + U0

)
=

(
2

3
ũ0u + U0

)
= M, (3.16)

where

ũ0u = ũ0(ξ = −∞) (3.17)

is the centreline (y = 1) magnitude of the Poiseuille flow upstream of the flame.
Thus M is a mass flux based on a flame propagation speed relative to an observer
moving with the average cross-sectional velocity associated with the Poiseuille flow.
The O(Pe) transverse velocity becomes

v0 = − y

ρ0

∂

∂ξ

(
ρ0

(
ũ0

(
y − y2

3

)
+ U0

))
, (3.18)

and the magnitude of the vorticity

|ω| = −∂u0

∂y
+ O(Pe2) = −2ũ0(1 − y) + O(Pe2). (3.19)

The vorticity is zero on the symmetry axis y = 1 and varies linearly with y, its
magnitude being proportional to ũ0.

In order to determine T0(ξ ) and Y0(ξ ), (3.3d) and (3.3e) at O(Pe2) are considered,
where

T ∼ T0(ξ ) + Pe2T1(ξ, y), Y ∼ Y0(ξ ) + Pe2Y1(ξ, y). (3.20)
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Integrating the O(Pe2) temperature equation

ρ0(ũ0(2y − y2) + U0)
∂T0

∂ξ
=

∂2T0

∂ξ 2
+

∂2T1

∂y2
+ QR0(ξ ) (3.21)

obtained from (3.3d) between y = 0 and y = 1 gives

ρ0

(
2

3
ũ0 + U0

)
∂T0

∂ξ
=

∂2T0

∂ξ 2
− κ(T0 − 1) + QR0(ξ ) (3.22)

or

M
∂T0

∂ξ
=

∂2T0

∂ξ 2
− κ(T0 − 1) + QR0(ξ ). (3.23)

Similarly, the O(Pe2) mass fraction equation

ρ0(u0 + U0)
∂Y0

∂ξ
=

1

Le

(
∂2Y0

∂ξ 2
+

∂2Y1

∂y2

)
− R0, (3.24)

obtained from (3.3e), can be integrated between y = 0 and y = 1 to give

M
∂Y0

∂ξ
=

1

Le

∂2Y0

∂ξ 2
− R0. (3.25)

It should be noted that equations (3.23) and (3.25) for T0(ξ ) and Y0(ξ ) are essentially
identical to those derived by Daou & Matalon (2002) in the Pe → 0 limit for the
constant-density approximation. The only difference arises with the choice of R0 in
the variable-density model (VDM). They are the standard equations that determine
the spatial structure and propagation velocity of a one-dimensional flame with a
volumetric heat loss term (Daou & Matalon 2002). In particular, an increase in κ

will result in the attainment of complete quenching. For the adiabatic case (κ = 0),
M = 1 with the scalings used in § 2. In the limit of large activation energy θ, the flux
M is

M2 ln
1

M
=

(Tb − 1)κ

θT 2
b

(3.26)

and the critical heat loss κc below which flames are quenched is

κc =
T 2

b

2eθ(Tb − 1)
. (3.27)

The significant difference between the variable- and constant-density cases as Pe → 0
is that the leading-order axial velocity is now modified by the propagating flame in
variable-density flow. The implications of this are discussed below for the inlet and
exit flow conditions (2.6)–(2.8) specified in § 2.

3.1. Poiseuille flow at the inlet

First consider a propagating flame opposed or assisted by a fully developed Poiseuille
inlet flow (ξ → −∞), where

u = uc(2y − y2) (3.28)

(see (2.6c)). Then, ũ0u = uc and

U0 = M − 2

3
uc (3.29)

so that the axial flame propagation speed is identical in both the variable- and
constant-density cases. Blow-off (U0 < 0) occurs whenever uc > 3M/2. However, in the
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variable-density case, the axial velocity profile through the channel is u = ũ0(2y − y2),
where

ũ0(ξ ) = uc +
3

2
M(T0(ξ ) − 1). (3.30)

Consequently, ũ0 far downstream (ξ → +∞) of the flame is given by

ũ0b = ũ0(ξ → + ∞) = uc +
3

2
M(T0b − 1), (3.31)

where T0b = 1 + Q in the adiabatic case and T0b = 1 in the non-adiabatic case. Thus
ũ0b = uc +3Q/2 in the adiabatic case, and ũ0b = uc in the non-adiabatic case. For
flame propagation towards the closed end of a channel, where u =0 as ξ → −∞, a
similar discussion is appropriate but where uc = 0.

3.2. Semi-closed channel, propagation away from the closed end

For flame propagation away from the closed end of a tube, ũ0b =0 as ξ → +∞. For an
adiabatic channel, thermal expansion will then induce a flow upstream of the flame,
where u = ui(2y − y2) as ξ → ∞. Based on (3.31), the magnitude of the centreline
(y = 1) axial velocity must then be

ui = −3Q

2
. (3.32)

Consequently, the axial flame propagation speed is

U0 = 1 + Q. (3.33)

In the adiabatic CDM, in order that the downstream axial flow velocity be zero
(ũb =0), we must set uc = 0 in (2.1d,e). In this case, U0 = 1. On the other hand,
in order for the flame speed in the CDM to match that of the variable-density
prediction for a flame propagating away from a closed wall in an adiabatic channel
when Pe → 0, the flame in the CDM should be assisted by an imposed Poiseuille flow
of the form u = −3Q(2y − y2)/2. The consequences of making these two choices in
the CDM in comparison with the VDM behaviour are ascertained in § 4. For a flame
propagating away from a closed wall in the non-adiabatic variable-density case, there
is no induced flow far upstream of the flame, and thus U = M, which coincides with
the non-adiabatic result that one obtains from the CDM having no imposed flow.

3.3. Axial flow variation

Equations (3.30) and (3.31) also tell us about the direction and magnitude of the
axial flow variation through the flame. Consider the adiabatic case first. When
uc � 0, ũ0(ξ ) increases monotonically through the flame reaching the value uc + 3Q/2.

For uc < 0, ũ increases towards zero and reverses sign at T0(ξ ) = 1 − 2uc/3 provided
that 1 − 2uc/3 < 1 + Q or uc > −3Q/2. The quantity ũ0 again reaches the value
uc +3Q/2 when the reactant is depleted. The magnitude of ũ0 in the burnt-
gas flow equals −uc when uc = −3Q/4. For uc < −3Q/2, the burnt-gas flow is
in the direction of the imposed outflow. More complex behaviours can occur
for the non-adiabatic case. For uc > 0, ũ0 increases for ξ < ξm, where ξm is the
value of ξ at which T0 obtains its maximum and subsequently decreases to the
value uc for ξ > ξm. For uc < 0, ũ0 increases towards zero, changing signs when
T0 = 1 − 2uc/(3M), provided max[T0] > 1 − 2uc/(3M). The quantity ũ0 reaches a
maximum value uc + 3M(max[T0] − 1)/2, upon which it decreases in magnitude,
reverses direction and subsequently relaxes to uc. When max[T0] � 1 − 2uc/(3M), ũ0

will first increase and subsequently decrease to uc with no change in the flow direction.
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3.4. O(Pe2) mass fraction surface perturbation

Finally, as in Daou & Matalon (2002), it is insightful to calculate the O(Pe2)
modification to the flame shape, in this case to each surface of fixed Y, that occurs
due to the non-planar flow. The O(Pe2) variation in Y can be obtained by integrating
the O(Pe2) reactant mass equation (3.3e) in y using ∂Y/∂y = 0 (2.4b) on y = 1. A
further integration in y together with the leading-order result Y0(ξ ) yields

Y ∼ Y0(ξ ) + Pe2Le

(
−ρ0ũ0

12
y2(y − 2)2

∂Y0

∂ξ
+ A(ξ )

)
. (3.34)

Now let ξ ∗ be the location at which Y has the value Y ∗ in the leading-order description.
The O(Pe2) perturbation to the position at which Y now attains the constant-mass
fraction Y ∗ is given by

ξ = ξ ∗ + Pe2ξ ′, (3.35)

where

ξ ′ =
Leρ0ũ0

12
y2(y − 2)2 + B(ξ ∗). (3.36)

Consequently, the relative distance between the reactant mass fraction reaching the
value Y ∗ on y = 0 and reaching the value Y ∗ on y = 1, a measure of the flame
deformation due to the flow, is given by

ξ ′
r =

Leρ0ũ0

12
. (3.37)

Each surface of constant-mass fraction is thus concave towards the upstream when
ũ0 > 0 and convex for ũ0 < 0. Note that the corresponding result for the CDM (Daou
& Matalon 2002) has ξ ′

r = Leuc/12. Also, from (3.16), the mass flux ρ0ũ0 is given by

ρ0ũ0 = uc +
3U0

2
(1 − ρ0), (3.38)

or, equivalently,

ρ0ũ0 = ρ0uc +
3

2
M(1 − ρ0), (3.39)

where M is constant.
Several implications of the results (3.38) and (3.39) are worth noting. First, as in

Daou & Matalon (2002), neither the effects of heat loss nor those of Lewis number
variations close to one determine the O(Pe2) spatial perturbation to the surfaces of
constant-mass fraction. A study of their effects in the constant-density formulation,
which enter at O(Pe4), was conducted by Cui et al. (2004). Also, since ρ0 < 1,

when uc > 0, ρ0ũ0 > uc for U0 > 0 (i.e. for uc < 3M/2) from (3.38). As a result, the
deformation experienced by each surface of constant-mass fraction under variable-
density conditions will be larger than that found under the CDM, and thus one
would expect higher burning rates with the variable-density flow. On the other hand,
under blow-off conditions, i.e. for U0 < 0 (uc > 3M/2), ρ0ũ0 <uc and both the flame
deformation and the burning rate experienced under a variable-density flow should
be smaller than that found for the corresponding constant-density approximation.
When uc < 0 the effects of the relative deformation experienced by each surface of
constant-mass fraction is more difficult to quantify, since ũ0 can change sign through
the flame. For T0 < 1 − 4uc/(3M), (i.e. when |uc| > |u0|), each surface of constant-mass
fraction in the variable-density flow will experience less relative deformation than its
constant-density counterpart. For T0 > 1 − 4uc/(3M) the opposite is true. Thus, for
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instance, in an adiabatic channel when uc < −3Q/2 (where no reversal in the direction
of the flow occurs through the flame), the constant-density flame must have a higher
burning rate. In contrast, for sufficiently small uc (< 0), the variable-density flame will
experience significantly more deformation than the corresponding constant-density
flame due to fluid expansion, and thus the variable-density flame should have a higher
burning rate.

The flame deformation result, ξ ′
r = Leuc/12, obtained by Daou & Matalon (2002)

also implies that for the constant-density approximation, the relative magnitude of
deformation experienced by each surface of constant-mass fraction is identical for a
flow of the same magnitude being directed either into the channel (uc > 0) or out of
the channel (uc < 0). For variable-density flow, this is not the case. Result (3.39) shows
that since 3M(1 − ρ0)/2 > 0, the relative deformation experienced by a flame opposed
by a flow of magnitude uc (> 0) is greater than that for a flame assisted by a flow of the
same magnitude uc (uc < 0), so that the burning rate for flow-assisted flames should
be smaller than for flow-opposed flames. Also, based on the above discussion of the
variation in ũ0 (3.30), the flame structure in a variable-density flow may consist of a
combination of surfaces of constant-mass fraction that are either convex or concave
to the upstream flow. For instance, in an adiabatic assisted flow with 0 >uc > −3Q/2,

the reaction surfaces with ũ0 < 0 will be convex to the upstream while those with
ũ0 > 0 will be concave. In a non-adiabatic assisted flow, if max[T0] > 1 − 2uc/(3M), the
head of the flame will be convex, with a change to concave surfaces of constant-mass
fraction when T0 = 1 − 2uc/(3M). A further switch to convex surfaces at the rear of
the flame may occur depending on the heat loss. Finally, we note that an increase
in uc (with uc > 0) leads to higher deformation magnitudes ρ0ũ0 for each surface of
constant-mass fraction and thus to higher burning rates. The situation for uc < 0 is
again more complex. In the adiabatic case, decreases in uc below uc = −3Q/2 will lead
to higher burning rates. When 0 >uc > −3Q/2, where flow reversal occurs through
the flame, the effect of changing uc on the burning rate is difficult to ascertain. This
is investigated numerically below.

4. Results: the effects of thermal expansion on premixed flame propagation
in narrow channels

4.1. Numerical procedure for the calculation of the variable-density solutions

For the variable-density calculations shown below, (2.1)–(2.8) are solved using a
method based on a fractional-step pressure-correction finite-difference scheme on a
staggered grid. Spatial derivatives are calculated using second-order central-difference
schemes, and a predictor–corrector time advancement scheme is employed to achieve
second-order accuracy in time. The details of the implementation have been described
by Liu (2003) and Kessler (2006). A typical grid spacing in the axial direction was
0.0275, while that in the transverse was 0.02. These were sufficient to convergently
resolve the small-Péclet-number to moderate-Péclet-number flame structures and flow
fields examined below. To ignite the mixture at t = 0, a pocket of hot burnt gas
with radius r0 = 1 is placed in the channel such that T =1 and Y = 1 for r2 >r2

0 and
T = 1 + βQ exp (−r2) and Y = 1 − exp (−r2) for r2 < r2

0 , where r2 = (x−x0)
2 + (y−1)2.

For adiabatic channels β =1, while for non-adiabatic channels β = 2. For calculations
performed with no imposed inlet flow, a quiescent flow is taken initially. For flows
with an imposed inlet mass flux, the velocity field is initialized as a Poiseuille flow
of strength uc throughout the channel. A constant-pressure gradient based on uc is
used to describe the initial pressure distribution. Steady-state propagation is assumed
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to exist when the rate of change of reaction rate in time has decreased below
some threshold value. The constant-density solutions used for comparison with the
variable-density cases are obtained by the numerical solution of (2.1d,e) with ρ = 1,

u = uc(2y − y2) and v = 0. Such solutions have been obtained previously by Daou &
Matalon (2001, 2002), Liu (2003) and Kessler (2006).

For the figures below, the following parameters have been chosen (unless noted
otherwise): L = 100, Q =2.5, θ =25, Pr = 1, Le = 1 and D = 7.481 × 103. Variations
in the Péclet number Pe (= Re when Pr = 1) result from changes in the half-
channel height ã and are chosen in the range Pe � O(1). Since the Péclet number is
proportional to the ratio of the half-channel height over the laminar flame thickness,
we are only concerned here with thick or moderately thick flames.

4.2. Adiabatic channels

4.2.1. Semi-closed tube; propagation from closed to open end

The first case we examine concerns the dynamics of a flame in a semi-closed
adiabatic (k = 0) channel propagating from the closed end (x = L) to the end (x = 0)
open to the atmosphere, i.e. with boundary conditions (2.7) at x = 0 and (2.8) at
x = L. Here L = 50. The initial hotspot was placed at the endwall with x0 = L.

Figure 2(a) shows the burning rate Ω as a function of the Péclet number Pe
once the flame has reached a steadily propagating state. Figure 2(b) shows the
corresponding magnitude of the induced axial velocity ui downstream of the flame at
x = 0, y = 1, an outflow that occurs due to thermal expansion in the channel in order
for the axial velocity to relax to u =0 downstream of the flame. Figure 2(c) shows
the corresponding axial propagation speed U of the steady flame. For small Péclet
numbers the burning rate limits to one, while the magnitude of the axial velocity on
y = 1 limits to −3.75 ( = −3Q/2 for Q =2.5) at x = 0, as predicted by the Pe → 0
analysis shown in § 3. Likewise, the axial flame propagation velocity U limits to 3.5
(U = 1 − 2ui/3) as Pe → 0. As the Péclet number increases, the burning rate increases,
with a concomitant rise in the magnitudes of ui and U . In particular, the burning
rate remains close to one for Pe � 1.8, with ui remaining close to −3Q/2 and U close
to 1 − 2ui/3. Beyond Pe ≈ 1.8, the rise in Ω, ui and U is significantly more rapid. A
little beyond Pe = 3.6, steadily propagating solutions cease to exist.

Figure 3 shows the flame structure as a set of mass fraction contours, the velocity
vector field, and the axial and transverse velocity variations in the region of the
flame zone after it reaches the steady propagation phase for the small Péclet number
Pe = 0.37425. The basic nature of the Pe → 0 flow analysed in § 3 is revealed. Upstream
of the flame, a flow in the direction of the channel exit x =0 has been induced.
Examination of the axial and transverse velocity contours reveals the upstream
flow to be of an apparent unidirectional Poiseuille form, that attains a constant
magnitude shortly upstream of the flame zone (figure 3a,b). A tranverse velocity
variation is present only within the flame zone, having a magnitude smaller than
that characterizing the axial velocity (figure 3c). This description is consistent with
the O(Pe) magnitude of v as Pe → 0 (§ 3). The separable nature of the axial flow
variation predicted in § 3 for small Péclet numbers is verified in figure 4(a). Plotted
is the quantity u/(2y − y2) from figure 3(b), corresponding to ũ0(ξ ) in § 3, along
y = 1. Plots of u/(2y − y2) along y = 3/4, y =1/2 and y = 1/4 overlay those shown.
Moreover, the graph of u/(2y − y2) is overlaid by the small-Péclet-number solution
(3.30) with uc = −3Q/2, where T0 is obtained by numerical solution of the planar
laminar flame equations (3.23) and (3.25). Similarly, the variation of ∂p/∂x along
y = 1 obtained from the calculation in figure 3 is shown in figure 4(b). Also shown is
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Figure 2. (a) Burning rate Ω against Péclet number Pe for a flame propagating away from
the closed end of a channel towards the open end. (b) Corresponding magnitude of induced
axial flow velocity on y = 1 at the exit plane. (c) Corresponding axial flame propagation speed.
In (a) and (c), the dashed lines represent the results obtained from a CDM.

the leading-order Pe → 0 pressure-gradient solution (3.11). Finally, the variation of v

along y = 1 shown in figure 4(c) is close to the O(Pe) expression (3.18).
Figure 5(a) shows the flame structure and velocity field vectors during steady

propagation for Pe = 2.994. With a larger Péclet number (associated with a wider
channel), the upstream induced flow causes the flame zone to deform so that it is
convex in the upstream direction. Consequently, the increase in flame surface area
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Figure 3. (a) Fuel mass fraction contours (with the solid lines representing Y = 0.9,
0.8, 0.5, 0.2 and 0.1) overlaid with velocity field vectors for a flame propagating from the
closed to the open end of a channel with Pe = 0.37425 at t =14.37. (b) Corresponding axial
velocity variation (u). (c) Corresponding transverse velocity variation (v).
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Figure 4. Variation of (a) u/(2y − y2), (b) ∂p/∂x and (c) v with axial coordinate x along
y = 1 for the calculation shown in figure 3 (Pe = 0.37425). In (a) and (b), similar plots along
y = 3/4, y = 1/2 and y = 1/4 overlay those shown. Also shown in (a), (b) and (c) as the dashed
lines are the equivalent variations calculated from the Pe → 0 solution in § 3.
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Figure 5. (a) Fuel mass fraction contours (with the solid lines representing Y = 0.9,
Y =0.8, Y = 0.5, Y =0.2 and Y = 0.1) overlaid with velocity vectors for a steadily propagating
flame travelling from the closed to the open end of a channel with Pe = 2.994 at the indicated
time. (b) Variation of u/(2y − y2) with axial coordinate x along y = 1 (dash-dotted line),
y =3/4 (dash-dot-dotted line), y = 1/2 (solid line) and y = 1/4 (dotted line) for the calculation
shown in (a). The Pe → 0 solution is given by the dashed line.

results in an increase in the burning rate above that of the planar laminar flame value
of one. The nature of the induced flow upstream still retains a Poiseuille character, as
illustrated in figure 5(b), except now the increase in burning rate results in an increase
in the magnitude of the induced flow over ui = −3Q/2. Shown in figure 5(b) is the
quantity u/(2y − y2) evaluated at y = 1, 3/4, 1/2 and 1/4. The axial flame propagation
speed has also increased above the Pe → 0 prediction of U0 = 1 − 2ui/3 = 3.5. Outside
of the flame zone, the curves of u/(2y − y2) are nearly coincident. For this case,
Ω = 1.150, ui = −4.32 and U = 4.025.

Returning now to figure 2, also shown in (a) and (c) are the burning rate and axial
flame speed predictions from a constant-density calculation. In the CDM, combustion
does not influence the flow field. Thus a constant-density solution with no imposed
flow in the adiabatic channel, that matches the endwall condition of u =0, will result
in a uniform burning rate of one for all Péclet numbers. The constant-density results
shown in figure 2 are therefore obtained through the insight given by the small-Péclet-
number analysis in § 3. In the Pe → 0 limit, the axial speed of a flame propagating away
from a closed wall in a VDM will match that obtained through a CDM provided a
flow of magnitude u = −3Q(2y − y2)/2 is imposed in the constant-density calculation.
The magnitude of this assisted axial flow corresponds to the magnitude of the outflow
characterized by ui = −3Q/2 that is induced in the variable-density calculation. Based
on this, the constant-density calculations shown in figure 2 are calculated in the
following way. Equations (2.1d,e) are solved numerically with ρ = 1, u = ui(2y − y2)
and v = 0, using the same Péclet and Damköhler numbers as in the variable-density
case, and with ui chosen to match the magnitude of the centreline outflow ui calculated
from the variable density case (obtained from figure 2b). Calculated in this manner,
the burning rate and the axial flame propagation speed variation with Péclet number
observed in figures 2(a,c) have the same qualitative variation as the variable-density
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Figure 6. Fuel mass fraction contours (solid lines) overlaid with velocity field vectors for an
accelerating flame (propagating from x =L to x =0) with Pe = 5.988 at several shown time
instants. Fuel mass fraction contour levels are 0.8, 0.5 and 0.2.

predictions but with both Ω and U calculated from the CDM overpredicting those
from the VDM calculation. Insights into the reason for this are given by the discussion
in § 3 on the relative deformations experienced by surfaces of constant-mass fraction
between the VDM and the CDM. As noted in § 3, for ui = − 3Q/2, the magnitude of
the mass flux ρ0ũ0 decreases through the flame zone in the VDM, so that in turn the
O(Pe2) flow-induced spatial deformation of each surface of constant-mass fraction
decreases through the flame zone. For the CDM, the spatial deformation of each
such surface is constant and equal to the deformation at the head of the flame in
the VDM. Consequently, it should be expected that the CDM will predict a higher
burning rate and a larger axial flame propagation speed. Nevertheless, calculations
conducted with the CDM in the above manner lead to qualitatively better predictions
of the VDM behaviour in Ω and U than CDMs calculated with no imposed flow.

As noted above, when the Péclet number is increased beyond that shown in figure 2,
steadily propagating flame solutions cease to exist for the initial hotspot conditions
described in § 4.1. (We have not studied how the Péclet number boundary between
steady and unsteady solutions may be affected by the initial condition form.) Figure 6
shows snapshots of the flame front and the thermal-expansion-induced velocity field
vectors for Pe = 5.988 at several time instants. The solution does not evolve to a
steady one, but rather the flame undergoes a smooth acceleration along the channel.
For this calculation, the induced axial velocity variation upstream of the flame zone
can still be fitted by a Poiseuille flow profile to a good approximation, but with
the intensity of the upstream induced flow increasing in time, as is clearly evident
from figure 6. Calculations conducted in longer adiabatic channels do not affect this
outcome. Corresponding to the increase in the magnitude of the induced flow, the
flame is continually deformed, developing greater surface area as it propagates down
the channel. Such accelerating flames, a consequence of thermal-expansion-induced
flow by a confined variable-density flame, have been previously observed by Liu
(2003) and Ott et al. (2003) in a narrow adiabatic channel configuration. In our case,
and that of Liu (2003), the induced flow is of a Poiseuille type, rather than the wall
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Figure 7. Fuel mass fraction contours (solid lines, with Y = 0.9, 0.8, 0.5, 0.2 and 0.1) overlaid
on the velocity field vectors for steady-flame propagation towards the closed end of the channel
with (a) Pe = 0.37425, (b) Pe = 2.994 and (c) Pe = 5.988.

boundary layer flow observed by Ott et al. (2003). Such accelerating solutions may be
expected to exist for a finite range of Péclet numbers in which channel confinement
and thermal expansion are sufficient to sustain the flame deformation. In summary,
for propagation away from the closed end of a channel, thermal expansion induces a
flow upstream of the flame zone towards the channel exit in order to relax the axial
velocity to the closed endwall conditions downstream of the flame zone. For small
Péclet numbers, the induced flow is of the Poiseuille type, but the curvature of the
induced flow only influences the flame shape at O(Pe2). For higher Péclet numbers,
the flame zone deforms under the influence of the thermal-expansion-induced flow.

4.2.2. Propagation in a semi-closed channel; towards the closed end

Figure 7 shows the flame structure and induced flow for a steady flame propagating
towards the closed end (x = 0) of a semi-closed adiabatic channel for Pe =0.37435,

Pe = 2.994 and Pe = 5.988. The channel is open at x =L, where L = 100. Thus
boundary conditions (2.8) are applied at x = 0 and (2.7) at x = L. The initial
hotspot was placed at the channel centre with x0 = L/2. Consequently, two oppositely
propagating flames are observed; the results shown below are subsequent to the
transient downstream-moving flame being blown out of the channel. As the observed
flame propagates towards the closed endwall, thermal expansion induces a flow
downstream of the flame in a direction towards x = L. Correspondingly, the flame
becomes concave towards the direction of propagation. For small Péclet numbers, the
flow downstream of the flame is again of the Poiseuille type, where the magnitude
of the downstream axial velocity on the centreline is ui =3Q/2. In figure 7, Ω = 1,

ub = 3.75 and U = 1 for Pe = 0.37425, Ω =1.03, ub = 3.87 and U =1.03 for Pe =2.994
and Ω = 1.18, ub = 4.43 and U = 1.17 for Pe =5.988, where ub is the magnitude of
the downstream axial flow velocity along y = 1. Thus, for a given Péclet number, the
burning rate is smaller for a flame propagating towards the closed end of the channel
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as opposed to the open end. In the limit Pe → 0, this is explained as follows. Equations
(3.37) and (3.39) reveal that the O(Pe2) deformation of a surface of constant mass
fraction is proportional to the mass flux quantity ρ0ũ0. For the flame propagating
towards an open end, the Y = 1 contour at the head of the flame has a deformation
proportional to ρ0ũ0 = −3Q/2, while that at the rear of the flame has ρ0ũ =0. On
the other hand, for the flame propagating towards the closed end, the Y =1 contour
has a deformation corresponding to ρ0ũ= 0, but the Y =0 surface has a deformation
corresponding to ρ0ũ0 = 3Q/2(1 + Q). Consequently, the flame propagating towards
the open end is nominally more highly deformed even though the magnitude of the
induced flow at the channel exit is the same in either case. As a final note on this case,
for Pe = 5.988 and propagation towards the open exit, a continuously accelerating
flame solution was found. For propagation towards the closed end for Pe = 5.988,

steadily propagating solutions are found (figure 7c). In fact we have not identified any
solutions of accelerating form for propagation towards the closed end of the channel.

4.2.3. Propagation with imposed inlet mass flux

The effects of thermal expansion on flame propagation in an open channel with an
imposed Poiseuille flow at the channel entrance are now examined. Thus conditions
(2.6) are applied at x = 0 and (2.7) are applied at x = L. In this section, adiabatic
sidewalls (k = 0) are again considered.

Figure 8(a) shows the burning rate Ω as a function of the inlet flow magnitude
uc for Pe =1.497, Pe = 2.994 and Pe = 5.988. Two significant features of the (Ω, uc)
behaviour need to be highlighted. First, for each of the Péclet numbers considered, the
burning rate corresponding to an imposed channel inflow of a given centreline (y = 1)
magnitude uc (> 0) is larger than the burning rate for an imposed channel outflow
of the same magnitude −uc (< 0). Second, the burning rate variation for uc < 0 has a
minimum at some finite value of uc for the three Péclet numbers shown (see figure 8c).
In the limit Pe → 0, the first feature is easily explained, as stated in § 3. In this case,
the relative O(Pe2) deformation of each surface of constant-reactant-mass fraction,
proportional to ρũ0, is by virtue of (3.39) larger for an opposed flow with a given
uc > 0 than for an assisted flow with magnitude −uc, since 3(1 − ρ0)/2 > 0. The second
property is not easily explained by the extent of the small-Péclet-number analysis
conducted in § 3. Indeed, based solely on the analysis of the reactant mass fraction
surface deformation behaviour, there is no expectation that in the limit Pe → 0, a
flame should develop a minimum in the burning rate at finite uc (with uc < 0). As
detailed in § 3, certainly any decrease in uc below −3Q/2 (for the adiabatic case)
should lead to an increase in the burning rate. For 0 >uc > −3Q/2, the surfaces of
constant-mass fraction at the head of the flame are convex towards the upstream but
are concave at the rear of the flame. It is not clear from the Pe → 0 analysis how this
outward bulging of the flame affects the burning rate in the regime 0 >uc > −3Q/2.

Figure 9 shows various mass fraction contours superimposed on the velocity
field vectors for Pe =0.37435 with inlet velocities uc = ±0.835. For this small Péclet
number, the basic flow and reaction zone structures are similar to those determined in
Pe → 0 limit (§ 3). For uc =0.835 (figure 9a), smaller than the blow-off velocity of 3/2,
the magnitude of the axial velocity at the outflow boundary x = L is ui = 4.58, while
the axial flame propagation speed is U = 4.40. The burning rate Ω = 1.0001. Each
reactant mass fraction contour is concave to the upstream flow. For 0 >uc > −3Q/2
and for Pe → 0, thermal expansion causes the axial flow to reverse direction in the
flame zone. Consequently, as noted in § 3, the surfaces of constant mass fraction at
the head of the flame are convex towards the upstream but are concave at the rear of
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Figure 8. Burning rate Ω against the intensity of the prescribed inflow uc for selected Péclet
numbers. The solid lines are based on variable-density simulations. In (b) and (c), the dashed
lines represent results obtained from the CDM.

the flame. Figure 9(b) shows the flame structure for uc = −0.835 and Pe =0.37435, a
case in which 0 >uc > −3Q/2. Then ui = 2.93, U = 1.54 and Ω =1.005. The bulging
nature of the flame structure described above is clearly observed in figure 9(c,d ),
which shows a magnification of the flame structure for the case in figure 9(b).

Figure 10 shows various reactant mass fraction contours superimposed on the
velocity vector field for the larger Péclet number Pe = 5.988 with inlet velocities
uc = ±0.835 and uc = −4.175. In this case, the flame thickness is comparable to the
channel height. For uc = 0.835 (figure 10a), Ω =1.416, ui = 6.15 and U = 0.86, where
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Figure 9. Fuel mass fraction (solid lines, for Y =0.9, 0.8, 0.5, 0.2 and 0.1) contours and
velocity field vectors for Pe = 0.37435 with (a) uc = 0.835, (b) uc = −0.835. Panels (c) (upstream)
and (d ) (downstream) show an expanded view of (b) in the vicinity of the flame front.
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Figure 10. Fuel mass fraction contours (solid lines, for Y = 0.9, 0.8, 0.5, 0.2 and 0.1) and
velocity field vectors for Pe = 5.988 with (a) uc = 0.835, (b) uc = −0.835 and (c) uc = −4.175.
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the magnitude of the axial flow velocity has increased through the flame zone. The
case uc = −0.835 (figure 10b) corresponds to a point near where the minimum in
the burning rate occurs in figure 8. Here Ω = 1.027, ui = 3.04 and U =1.58. As
shown in figure 10(b), the flame is approximately planar, hence the attainment of a
burning rate close to one (figure 8a). The planar structure arises due to the effects
of thermal expansion. The imposed channel outflow at the channel entrance attempts
to induce a flame curvature such that the flame is convex towards the upstream.
Thermal expansion acts to reverse the direction of the flow, attempting to make
the flame concave towards the upstream. For uc = −0.835, the net result is a nearly
planar flame structure. For uc = −4.125, the flame is convex towards the upstream,
with Ω = 1.818, U = 4.60 and ui = 2.66. Consequently, the direction of the axial flow
downstream of the flame is in the sense which is opposite that of the upstream flow
even though uc < −3Q/2. The curvature of the flame observed in this case is sufficient
to induce a flow reversal through the flame zone that does not occur in the Pe → 0
limit.

Figure 8(b,c) shows the comparison between the burning rates obtained in the CDM
and the VDM as uc is varied. In the limit Pe → 0, and based on arguments over how
the burning rate should be affected by spatial deformation, it was demonstrated in
§ 3 that for uc > 0 the burning rate for the VDM should be lower than that of the
CDM under blow-off conditions (i.e. for uc > 3/2). For 0 � uc < 3/2, the opposite is
true. For uc < 0 and sufficiently small, it was concluded that the VDM should have
a higher burning rate but that at some undetermined value of uc, the CDM should
have the higher burning rate. This general behaviour is reproduced in figure 8(b,c)
for the Péclet numbers shown. For uc > 0, an increase in Pe increases the value of uc

at which the VDM and the CDM transition between the higher and lower burning
rates. Similarly for uc < 0, the transition point occurs for decreasing uc. Overall, the
CDM does an adequate job of capturing the correct (Ω, uc) variation.

4.3. Non-adiabatic channels

4.3.1. Semi-closed channel; propagation towards the open or closed end

We now turn our attention to the effects of density variation and comparisons
with the constant-density approximation, for flame propagation in a non-adiabatic
channel. In the following, we restrict our attention to small and moderate Péclet
numbers for which there exists a κ where complete, rather than partial, quenching
is possible in the channel (Daou & Matalon 2002). There are significant differences
with flame propagation in adiabatic channels, and these are highlighted below. Flame
propagation in a semi-closed channel, with the flame propagating towards either the
closed or the open end, is considered initially. In the small-Péclet-number limit Pe → 0,

and for a sufficiently long channel (such that the temperature is able to relax to the
upstream value downstream of the flame), the steady flow solution is given by (3.23),
(3.25) and (3.30) in § 3. Thus, in a sufficiently long channel with no imposed open
end flow, the cases of propagation either towards the closed end or towards the open
end away from the closed wall are identical. This is in contrast to the adiabatic case,
where propagation away from the closed end induces an upstream axial Poiseuille
flow in the direction of flame propagation, having a magnitude ũi = −3Q/2, while
propagation towards the closed end induces a downstream Poiseuille flow opposite to
the flame propagation direction, having a magnitude ũi = 3Q/2. Also, in the adiabatic
case the flame propagating towards the open end has the higher burning rate. For the
non-adiabatic problem, in both cases, the axial flow magnitude ũ0 on y =1 increases
from zero upstream in a direction opposed to that of flame propagation, reaches a
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Figure 11. Fuel mass fraction contours (solid lines, with Y = 0.9, 0.8, 0.5, 0.2 and 0.1) and
velocity field vectors for flame propagation away from the closed end of a channel (x = 100)
with Pe = 1.497 and k = 0.06 (κ = 0.02677) at (a) t = 11.98, (b) t = 35.93 and (c) t = 59.88.

maximum when ũ0 = 3M(max[T0] − 1)/2 and then decreases to zero downstream of
the flame as heat losses cause T0 to relax to one.

In practice, the length of the channel required to reach a steady-state solution will
depend on the heat loss parameter k. Initially, in finite-length channels, unsteady
transients should be expected, as the downstream temperature at the closed or the
open end is influenced by heat losses. Figure 11 shows a sequence of snapshots of
the evolution in the induced velocity field for a flame propagating from the closed
to the open end of a channel for Pe = 1.497 and k = 0.06 (or κ = k/Pe2 = 0.02677).
The channel length is L = 100, and the flame is initiated at the closed end by
a hotspot with x0 = L. During the early stages of the evolution when T > 1 at
x = L, an axial, Poiseuille-like, flow is induced upstream of the flame, as shown in
figure 11(a). In the limit Pe → 0, and assuming that the time scale of relaxation to the
steady solution is large, the instantaneous magnitude of the induced flow upstream
would be ui = −3M(TL − 1)/2, where TL is the temperature at the closed wall. At
t = 11.976 (figure 11a), the magnitude of the induced axial flow at x =0 and y = 1
is ui = −0.824, while the axial propagation speed is U = 1.32 and the burning rate
is Ω = 0.775. The temperature T = TL (taken at x = L and y =1) is TL = 1.94. In
the Pe → 0 limit, Ω = M and using the preceding values −3M(TL − 1)/2 = −1.09275,

which is larger than the calculated value ui = −0.824. On the other hand, in the small-
Péclet-number limit, the axial velocity U is M − 2ui/3. Using the preceding values,
M − 2ui/3 = 1.3243, close to the calculated value. In figure 11(a), thermal expansion
causes the axial flow direction to reverse through the flame. The magnitude of the
reversed flow falls in the region between the flame and the endwall, as heat losses
lead to a drop in temperature downstream of the flame, limiting the local thermal
expansion. As time progresses, the temperature at the endwall drops, and thus the
magnitude of the induced flow out of the channel must also decrease (cf. (3.30)). In fig-
ure 11(b), ui = −0.224, U = 0.92, Ω = 0.762 and TL =1.27 (−3M(TL − 1)/2 = 0.3086,
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Figure 12. Fuel mass fraction contours (solid lines, with Y = 0.9, 0.8, 0.5, 0.2 and 0.1) and
velocity field vectors for flame propagation away from the closed end of a tube with Pe = 5.988
and k = 0.1 (κ = 0.002789) at (a) t = 2.3952, (b) t = 4.7904, (c) t = 7.1856, (d ) t = 9.5808 and
(e) t = 14.3712.

M − 2ui/3 = 0.911), while in figure 11(c), ui = −0.078, U =0.77, Ω =0.758 and
TL =1.10 (−3M(TL − 1)/2 = 0.1137, M − 2ui/3 = 0.81). In figure 11(c), the spatial
deformation of each surface of constant-mass fraction is concave to the upstream
direction. Thus, even though the effect of heat loss is to induce a deformation in
the flame shape to be convex in the direction of propagation, for moderately small
Péclet numbers, the spatial deformation of each surface of constant-mass fraction is
dominated by thermal expansion (as shown in (3.39)).

Figure 12 shows the evolution of the velocity field for Pe = 5.988 and k = 0.1
(or κ =0.002789). In an adiabatic channel continuously accelerating flames were
identified for this Péclet number (figure 6). Initially, while the temperature on the
endwall has yet to be substantially influenced by heat loss, accelerating flames are
also identified in figure 12 in combination with a significant induced upstream axial
flow. The strong axial flow induces a significant deformation of the flame towards the
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Figure 13. Burning rate against time for figure 12.

upstream. In figure 12(a), ui = −14.97, U = 14.8, Ω = 4.43 and TL = 3.82, while in
figure 12(b), ui = −16.98, U = 16.7, Ω = 5.40 and TL =3.35. As the temperature at
the endwall drops, figure 12(c) (where TL =3.04) shows a drop in the magnitude
of the induced upstream flow, where ui = −7.21 and a corresponding drop in
the axial flame propagation speed (U = 7.4) and the burning rate (Ω = 3.08). In
figure 12(d, e), the magnitude of the induced upstream flow drops further, and a
further decay in the burning rate occurs, as shown in figure 13. In figure 12(e),
ui =0.12, U =0.95, Ω = 1.13 and TL = 2.45. Note, in addition, the relative flatness
of the flame in figure 12(d, e), despite the relatively large Péclet number, as the flame
approaches a propagation phase in which changes in the burning rate occur on a
slower time scale as TL relaxes to one. The flatness results from a balance between
heat loss, which causes a spatial deformation of the flame convex to the upstream
direction, and the local thermal-expansion-induced axial flow field, which induces a
spatial deformation of the flame concave to the upstream direction. In addition to the
present study, Ott et al. (2003) also found that accelerating flames could not be found
in non-adiabatic channels. Here the reason for this is identified as the decay of the
thermal-expansion-induced flow upstream of the flame due to the heat loss limiting
of thermal expansion downstream of the flame, so that the influence of thermal
expansion becomes localized around the flame zone region. Thus accelerating flames
only appear to exist as transient solutions in sufficiently long non-adiabatic channels
(as in figure 12).

Figure 14 shows the burning rate obtained by a steadily propagating flame as a
function of the heat loss parameter κ = (k/Pe2) for a flame propagating towards the
closed channel wall with Pe =0.7485, Pe =1.497 and Pe = 2.994. In these calculations,
for each κ, the channel length L is taken to be sufficiently long for the burning rate to
relax to a steady value where TL → 1 downstream of the flame. The variation in the
curves for Pe = 0.7485 and Pe = 1.497 is small. For Pe = 2.994 and small values of the
heat loss parameter κ, the burning rate is larger than for Pe =1.497 and Pe = 0.7485.

For larger values of κ, where the burning rate is more substantially affected by the
heat loss, the calculated burning rate for Pe = 2.994 is close to those for Pe = 1.497
and Pe =0.7485. For each fixed Pe, the critical value of κc, where for κ >κc quenching
occurs, are similar, where κc ≈ 0.035. This is in excellent agreement with the value of
κc ≈ 0.036 obtained from the small-Péclet-number large-activation energy result (3.27).
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Figure 14. Burning rate Ω as a function of k/Pe2 for flame propagation towards the closed
end of the channel. Péclet numbers are as shown.

k/Pe2

Ω

10–4 10–3 10–2
0.5

0.6

0.7

0.8

0.9

1.0

Figure 15. Comparison of the burning rate Ω as a function of k/Pe2 for flame propagation
towards the closed end of the channel for the VDM (solid line) and the CDM (dashed line)
for Pe = 0.7485.

An examination of the flame structures near the quenching region for these three
Péclet numbers shows the flames to be approximately one-dimensional, resulting from
the opposing flame deformation effects of heat loss and thermal expansion. Figure 15
shows a comparison of the burning rate Ω as a function of κ between the VDM and
the CDM for the Pe = 0.7485 case shown in figure 14. The curves are quantitatively
similar, a result of the similar nature of the Pe → 0 VDM and CDM given by (3.23)
and (3.25). However, the CDM gives a lower value of κc (= 0.0307).

4.3.2. Propagation with an imposed inlet Poiseuille flow

Figure 16 shows the variation of the burning rate with centreline inlet velocity uc

for k = 0.15 (κ =0.01673) and Pe = 2.994 for the VDM. Of most interest is that for
this Péclet number, the burning rate Ω is larger for a flame-assisted flow (uc < 0) than
for a flame-opposed flow of the same magnitude. The difference between assisted and
opposed flow burning rates increases as the magnitude of uc increases. The opposite
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Figure 16. Comparison of the burning rate Ω against the intensity of the prescribed
inflow uc for Pe = 2.994 and k = 0.15 (κ = 0.01673) for the variable-density (solid line) and
constant-density (dashed line) simulations.

has been found for flame propagation in an adiabatic channel for Pe = 2.994 (figure 8)
and in the small-Péclet-number limit. The Pe → 0 study in § 3 shows that the relative
deformation experienced by a flame opposed by a flow of magnitude uc (> 0) is greater
than that for a flame assisted by a flow of the same magnitude uc (< 0) regardless of
the heat loss κ. The heat loss simply affects the relative magnitudes of the deformation
via the value of the flux M in (3.30). In figure 16, for uc < 0, the sidewall heat loss
results in a deformation of the flame that occurs in the same direction as that due to
thermal expansion, i.e. convex to the upstream. This deformation combination results
in a burning rate that is larger than that due to heat loss and thermal expansion
for the same magnitude of uc but with uc > 0. In the uc > 0 case, the deformation
due to heat loss (convex to the upstream) occurs in the sense which is opposite that
of thermal expansion (concave to the upstream). Based on the Pe → 0 behaviour
and figure 16, heat loss plays a more significant role in the determination of relative
opposed and assisted burning rates as the Péclet number and the magnitude of uc

increase. The variable-density burning rate curve also has a minimum in the region
uc > 0 rather than for uc < 0 as found in the adiabatic channel. Presumably this
occurs when the opposing deformation effects of heat loss and thermal expansion for
uc > 0 combine to produce the least deformed flame surface. Figure 16 also shows
the burning rate variation with uc obtained from the CDM (Daou & Matalon 2002).
The constant-density burning rate for uc < 0 and for sufficiently large uc > 0 is greater
than the variable-density burning rate. There is a range of uc in which uc > 0 for
which the constant-density burning rate is smaller than the variable-density burning
rate.

Figure 17 shows a comparison of the variation in steady burning rates with heat
loss κ from the VDM and the CDM for Pe =2.994 and uc = ±0.835. For the flame-
opposed case, the agreement between the two model predictions becomes better
as κ increases, with reasonable agreement as the heat losses begin to significantly
affect the burning rate. For the flame-assisted case, the agreement is poorer in the
κ region near the flame-quenching limit. The quenching heat loss parameter κc for
uc = −0.835 is lower in the VDM (κc = 0.0406) than in the CDM (κc = 0.0489), while
for uc = 0.835, κc = 0.031 for the VDM and κc = 0.028 for the CDM. Figure 18 shows
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Figure 17. Comparison of the burning rate Ω as a function of k/Pe2 for Pe =2.994 and (a)
uc = 0.835 and (b) uc = −0.835 for the VDM (solid line) and the CDM (dashed line).
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Figure 18. Fuel mass fraction contours (solid lines) for Y = 0.9, 0.8, 0.5, 0.2 and 0.1 and
velocity field vectors for Pe = 0.7485 with uc = −0.835 and k =0.018 (κ = 0.03213).

lines of constant-mass fraction with velocity field vectors for Pe = 0.7485, uc = −0.835
and k = 0.018 (κ = 0.03213). As predicted in § 3, thermal expansion causes the axial
flow field to reverse direction through the flame, which then decreases in magnitude
due to heat loss. Sufficiently far downstream of the flame, the flow reverses direction
again, limiting close to uc = −0.835. At the time shown in figure 18, ui = 0.902.

Figure 19 shows the deformation of the flame surface for the case shown in figure 18.
At the head of the flame, the lines of constant-mass fraction are convex to the
upstream, while the rear section of the flame has lines of constant mass fraction
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Figure 19. Fuel mass fraction contours (solid lines) and velocity field vectors in the vicinity
of the flame front for Pe = 0.7485 with uc = −0.835 and k = 0.018 (κ = 0.03213).

that are concave to the upstream. Since the reversal in the flow direction shown in
figure 18 only occurs far downstream, an additional change in the convexity of the
surfaces of constant-mass fraction, a possibility raised in § 3, does not occur.

5. Summary
The influence of thermal expansion on the dynamics of thick to moderately thick

premixed flames (flame thickness less than or comparable to the channel height) for a
variable-density flow in a narrow, rectangular channel has been examined. This paper
extends in those regimes the study of Daou & Matalon (2001, 2002), who considered
a constant-density formulation.

The study was conducted within the framework of the zero-Mach-number, variable-
density Navier–Stokes equations. Both adiabatic and non-adiabatic channel walls were
considered. A small-Péclet-number asymptotic solution was developed for steady
variable-density flame propagation in the narrow channel. In this limit, the variations
in temperature and species concentrations are governed by the one-dimensional
laminar flame solution with a volumetric heat loss term. When written in terms of the
mass flux, the equations governing the temperature and concentration variations
were identical in form to those derived via a CDM (Daou & Matalon 2002).
Quenched solutions are identified within a regime in which the convective heat loss
parameter is O(Pe2), as in Daou & Matalon (2002). The axial velocity is governed
by a separable solution consisting of a channel Poiseuille flow with an amplitude
modified by thermal expansion. The small-Péclet-number solution was examined for
configurations including flame propagation from the closed to the open end of the
channel, towards the closed end of the channel and towards the channel inlet with
an imposed Poiseuille flow (flame assisting or flame opposing). The quantitative
nature of the axial velocity variation, in all cases of Poiseuille form, was dependent
on the configuration studied. The burning rate modification of the leading-order
small-Péclet-number laminar flame solution due to thermal expansion was examined
by calculating the O(Pe2) spatial deformation experienced by curves of constant-
mass fraction. Thermal expansion in a channel with an imposed Poiseuille flow of
magnitude |uc| at the channel entrance causes a flow-opposed flame (uc > 0) to burn
at a higher rate than a flow-assisted flame (uc < 0).
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The dynamics of narrow-channel flames were also examined numerically for finite
Péclet numbers in the configurations mentioned above. Comparisons of the finite-
Péclet-number dynamics were made with the predictions of the small-Péclet-number
solutions. We also compared how thermal expansion modifies the flow dynamics from
those determined from similar studies undertaken in a CDM (Daou & Matalon 2001,
2002). For an adiabatic channel, and for flame propagation away from a closed wall,
steadily propagating solutions were identified for sufficiently small Péclet numbers.
Thermal expansion through the flame in the confined channel induces a Poiseuille
axial flow upstream. The magnitude of the upstream axial flow at the channel exit
and the burning rate both increased with increasing Péclet number. In channels of
a finite size, continuously accelerating flames occur as a result of thermal-expansion-
induced upstream flow and the stretching of the flame surface due to the induced
flow, as previously found by Liu (2003) and Ott et al. (2003). CDM calculations
based on a Poiseuille flow having a magnitude equal to the induced velocity outflow
from the variable-density calculations offered a reasonable comparison with the
variable-density results. For flame propagation towards the closed end of the channel,
the burning rate was smaller, and the induced flow caused a flame deformation
in the opposite sense (concave to the upstream), than flames propagating away from
the closed end with the same Péclet number. No accelerating flames were identified
in this case. For finite Péclet numbers, the burning rate variation for an imposed
channel inlet flow of magnitude uc continued the Pe → 0 limit behaviour of having
a larger value for flame-opposed flows. In non-adiabatic channels, in the case of
flame propagation towards the open end of the channel, accelerating flames were only
identified as transient solutions, before the onset of steadily propagating flames. Here,
heat loss minimizes the role of thermal expansion upstream and downstream of the
flame, localizing the effects of thermal expansion to the flame zone region. Also, as
the Péclet number increases, heat loss can result in the burning rate of a flow-assisted
flame to become greater than that of a flow-opposed flame, where the flow magnitude
is the same in both cases. When plotted as a function of κ = k/Pe2, the heat loss
parameter κ for complete quenching was similar for different Péclet numbers for
the variable-density calculations (Daou & Matalon 2002). The small-Péclet-number
variable-density solution for a flame propagating in a circular pipe is also given in an
appendix.
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the Department of Energy. The authors are also grateful to Professor Moshe Matalon,
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Appendix. Pe → 0 analysis for circular pipe flow
Here we derive the solution for symmetric variable-density flame propagation in a

circular pipe the radius of which is smaller than the flame thickness. The radial and
axial coordinates are denoted by r and z respectively, while the axial velocity is uz

and the radial velocity is ur. Along r = 0, the symmetry conditions

∂T

∂r
= 0,

∂Y

∂r
= 0,

∂uz

∂r
= 0, ur = 0,

∂p

∂r
= 0 (A 1a–d )
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are applied, while along r = 1 the conditions

∂T

∂r
= −Pe2κ(T − 1),

∂Y

∂r
= 0, uz = 0, ur = 0 (A 2a–d )

hold. For an imposed Hagen–Poiseuille flow at z = 0 with an open pipe at z = L, the
conditions

T = 1, Y = 1, uz = uc(1 − r2), ur = 0 (A 3a–d )

are applied at z = 0, while the conditions

∂T

∂z
= 0,

∂Y

∂z
= 0,

∂uz

∂z
= 0,

∂ur

∂z
= 0, p = 0 (A 4)

are applied at x =L. As in § 3, the flame propagates to the left (z decreasing)
with constant axial velocity U. With the scalings adopted in § 3, ξ = Pe(z + Ut) and
p̄ = Pe2p, (2.1) becomes

Pe
∂

∂ξ
(ρ(uz + U )) +

1

r

∂

∂r
(ρrur ) = 0, (A 5a)

Peρ(uz + U )
∂uz

∂ξ
+ ρur

∂uz

∂r
= − 1

Pe

∂̄p

∂ξ
+

Pr

Pe

[
4Pe2

3

(
∂2uz

∂ξ 2

)
+

(
∂2uz

∂r2

)

+
1

r

∂uz

∂r
+

Pe

3r

∂ur

∂ξ
+

Pe

3

(
∂2ur

∂ξ∂r

)]
, (A 5b)

Peρ(uz + U )
∂ur

∂ξ
+ ρur

∂ur

∂r
= − 1

Pe2

∂̄p

∂r
+

Pr

Pe

[
4

3

(
∂2ur

∂r2

)
+ Pe2

(
∂2ur

∂ξ 2

)

+
4

3r

∂ur

∂r
− 4

3

ur

r2
+

Pe

3

(
∂2uz

∂ξ∂r

)]
, (A 5c)

Pe2ρ(uz + U )
∂T

∂ξ
+ Peρur

∂T

∂r
= Pe2 ∂2T

∂ξ 2
+

1

r

∂

∂r

(
r
∂T

∂r

)
+ Pe2QR, (A 5d)

Pe2ρ(uz + U )
∂Y

∂ξ
+ Peρur

∂Y

∂r
=

1

Le

(
Pe2 ∂2Y

∂ξ 2
+

1

r

∂

∂r

(
r
∂Y

∂r

))
− Pe2R. (A 5e)

In the limit Pe → 0, solutions may be obtained with the expansions

T ∼ T0(ξ ) + Pe2T1(r, ξ ), Y ∼ Y0(ξ ) + Pe2Y1(r, ξ ), ur ∼ Pe ur0(r, ξ ), (A 6)

uz ∼ uz0(r, ξ ) + O(Pe2), p ∼ p0(ξ ) + O(Pe2), ρ ∼ ρ0(ξ ) + O(Pe2). (A 7)

A separable solution for the leading-order axial velocity uz0 is again found. Its form
is

uz0 = ũz0(ξ )(1 − r2), (A 8)

corresponding to a Hagen–Poiseuille flow variation in the radial direction. The
leading-order mass equation can be integrated from r =0 to r = 1 where ur0 = 0
on r = 0 and r = 1 to give

ρ0(ξ )

(
ũz0(ξ )

2
+ U0

)
=

(
ũz0u

2
+ U0

)
= Mp. (A 9)

Following § 3, the leading-order radial velocity is determined to be

ur0 =
r

4ρ0

∂

∂ξ

(
ρ0

(
ũ0(2 − r2) − 2U 2

0

))
, (A 10)
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while the leading-order vorticity magnitude is

|ω| = −∂uz0

∂r
+ O(Pe2) = ũz0(ξ )2r + O(Pe2). (A 11)

As in § 3, the leading-order temperature and mass fraction variations can be obtained
by integrating the O(Pe2) temperature and species equations from r =0 to r =1 to
give

Mp

∂T0

∂ξ
=

∂2T0

∂ξ 2
− 2κ(T0 − 1) + QR0(ξ ) (A 12)

and

Mp

∂Y0

∂ξ
=

1

Le

∂2Y0

∂ξ 2
− R0(ξ ). (A 13)

These equations are identical to those derived for channel flow, corresponding to
variable-density one-dimensional flame propagation with volumetric heat loss, except
that the heat loss factor in (A 12) is twice that found for channel flow.

For a flame opposed or assisted by a fully developed Hagen–Poiseuille flow as
ξ → ∞ (A 3c), ũz0u = uc and

U0 = Mp − uc

2
. (A 14)

Consequently, blow-off occurs for uc > 2Mp. Whether or not blow-off is more easily
achieved in a pipe (uc > 2Mp) than in a channel (uc > 3M/2) for the same flow
conditions depends on the value of the heat loss coefficient κ. In an adiabatic
channel, it is clearly harder to blow off a flame in a pipe (uc > 2) than in a channel
(uc > 3/2). However, the doubling of the volumetric heat loss factor in (A 12) implies
that Mp will be smaller than M for the channel case for fixed κ. When Mp < 3M/4,

it is easier to blow off the flame in a pipe. The leading-order axial velocity variation
is given by

ũz0(ξ ) = uc + 2Mp(T0(ξ ) − 1), (A 15)

and ũz0 downstream of the flame (ξ → +∞) is given by

ũz0b = uc + 2Mp(T0b − 1), (A 16)

where T0b = 1 + Q in the adiabatic case and T0b = 1 in the non-adiabatic case. Thus
ũz0b = uc + 2Q in the adiabatic case, a higher velocity than in the channel. For
propagation away from the closed end of an adiabatic tube, where ũ0zb = 0, the
magnitude of centreline (r = 0) induced flow as ξ → −∞ is consequently uc = −2Q.

Finally, as in § 3, it is useful to calculate a measure of the O(Pe2) deformation
induced on each surface of constant-mass fraction by the non-planar flow. The
expression for Y is

Y ∼ Y0(ξ ) + Pe2

(
Leρ0ũz0

16
(2r2 − r4)

∂Y0

∂ξ
+ A(ξ )

)
. (A 17)

Let ξ ∗ be the location at which Y has the value Y ∗ in the leading-order problem. The
O(Pe2) spatial perturbation at which Y now obtains the constant-mass fraction Y ∗ is
given by

ξ ′ =
Leρ0(ξ

∗)ũz0(ξ
∗)

16
(r4 − 2r2) + B(ξ ∗). (A 18)
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The relative distance between Y reaching the value Y ∗ on r = 0 and r = 1 is then given
by

ξ ′
rp =

Leρ0ũ0

16
, (A 19)

where

ρ0ũz0 = uc + 2U0(1 − ρ0) = ρ0uc + 2Mp(1 − ρ0). (A 20)

In an adiabatic channel, M = Mp and

ξ ′
r − ξ ′

rp =
ρ0ũc

48
, (A 21)

so that for uc � 0 each surface of constant-mass fraction undergoes more deformation
in the channel than the pipe. Finally, all of the generic characteristics of the influence
of thermal expansion on flame propagation in a channel in the Pe → 0 limit carry
over to pipe flow.
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